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Noncanonical hamiltonian structures are presented both for Yang—Mills Vlasov plasmas, and for ideal fluids interacting
with Yang—Mills fields. These hamiltonian structures are given Lie-algebraic interpretations.

A problem of some theoretical interest is to describe
the hamiltonian structure of a fluid which is coupled
self-consistently to a nonabelian gauge field. For short
we call such a theory CHD, chromchydrodynamics.
This theory is the nonabelian extension of plasma
physics.

Here we give the Poisson brackets for a Yang—Mills
Vlasov plasma and for a fluid interacting with a self-
consistent Yang—Mills field. We also give the Lie-al-
gebraic interpretation of these Poisson brackets.

Consider the following single particle Poisson brack-
et between functions of x, p, and g.

aJ 9K 9K aJ oJ 9K
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This is the direct sum of the canonical bracket for the
coordinates x and momentum components p of the
particle together with a Kirillov bracket [1] for its
charge g. The charge belongs to the dual g* of some
Lie algebra g, hence 8.J/0g and 0K/dg as well as their
commutator [0J/dg, 8K/0g] all belong to the algebra
itself, so the pairing (g, [8J/dg, 0K/0g]) is a scalar.
The Jacobi identity for the Kirillov bracket follows
from the Jacobi identity for the Lie algebra g.

For the single-particle hamiltonian,

Hl =%(p _<g:A(xs t)))z _(g:AO(xs t)) ’ (2)

one may derive, from Hamilton’s equations,

1 present address: Istituto di Fisica deli’Universitd, Universitd
degli Studi-Roma, I 00185 Rome, Italy.

2 Present address: Mathematics Department, The University
of Michigan, Ann Arbor, MI 48109, USA.

55,-=—(g, E,-)—(g, )E]Bﬂ), (3)

which is the Yang—Mills analogue of the Lorentz force;
the fields E and B are defined in terms of the potentials
A and A, by

Ei = BA,/Bt — leO + [AI’AO] ,
Bij = V]A, — VIA] + [AI’A]] . (4)

The Poisson bracket for a Vlasov equation in the
single particle phase space is simple to define; for any
two functionals g [f], X [f] depending on the distri-
bution function f on phase space, we take

91 xlAy=f f[ﬁ,aix—} dNx dNp dPg.
8f’ of |; )

Here N is the dimension of space, D the dimension of

the algebra g. The Jacobi identity for this bracket { , }f

follows from that for the single particle bracket { , } 1-

The hamiltonian structure of the Yang—Mills
Vlasov plasma is the direct sum of this structure with
a canonical structure for the fields:
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Remark: in the case when g is abelian, this hamiltonian
structure reduces to that of Marsden and Weinstein [2].
Here the field *E, canonically conjugate to 4, belongs
to g*, and may be thought of as the transpose of E (in
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a matrix representation). The last equation, a con-
straint which is compatible with the equations of mo-
tion, arises from the gauge symmetry of the system; in
fact it is just Gauss’s law. The hamiltonian for a non-
relativistic plasma is

H = f[%(P —(g, AN — (g, APIfdVx dVp dDg

+ [ (LB B+ By, (VA — [An Ag]))
+3(*B;;, B} dVx, ()

from which the hamiltonian structure (6) produces
the Yang--Mills Vlasov equations.

One passes to the barotropic fluid limit by consid-
ering the moments:

o=[rapaPg, M= [fpaVpddg,

G= [ fg aNp dDg, )

and then considering the “cold plasma’ limit, where
fis determined by these moments alone. The hamil-
tonian structure (6) in these variables restricts to

8H
p 0 0 Vip 3;
8
3G |=—0 —ad*¢ VG =
6H
M; pVi GV ViMp + MV sar
i
©)

where H is the cold-plasma limit of (7) and the GG
term in the middle is to be read as

*Qf_l) = a ﬁ c
_(ad 5c)C G,V 5Gbe , (10)

where vf . are the structure constants of the algebra
gin a basis with elements e,, € are elements of the
dual basis, and G = G,e?, G, € C*(RN).

The full hamiltonian structure is the direct sum of
(9) with the canonical structure for *E and A. In order
to describe motion of a barotropic fluid, one takes the
following hamiltonian:
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H= [ (M =G, 4)/(2p) — (G, 4¢)

+U(p) +3CE B +5 "By, By
+{E;, VA + [AO,A/-]>de , (11)

which is, apart from the internal energy term U(p),
the restriction of the hamiltonian (7) to a cold plasma.
This hamiltonian together with the structure (9) plus
the canonical part for *E and A produces the motion
equation for a barotropic fluid which is driven by a
Yang—Mills Lorentz force density:

ov; U
P (-5‘; + v,-V,-vj) + ij —av'(.fq)= —G, Ej + UiBij> ,
(12)
where the velocity v; is given by
v; = SH/SM; . (13)
7 ]

For a fluid whose internal energy depends also on
entropy density ¢, one adds to the hamiltonian struc-
ture (9) terms which are analogous to those in p,
namely

d0/dt = —V;08H/SM,; , (14)

and one adds to dM; /¢t a term (o V;6H/50) as well.
All of the CHD equations may then be computed
readily from their hamiltonian structure, see e.g., ref.
[6].

In the hamiltonian structure for CHD, the non-
canonical part depends linearly upon the fluid variables
and therefore can be interpreted [3] as a Lie algebra.

Let 3 denote a Lie algebra of smooth functions on
R” with values in g. The Lie algebra @ (R”) of vector
fields on R” acts naturally on C*(R”) and ong. Let
L be a Lie algebra (semidirect product):

L=D (RN @[a®C=(R")® C=(R")] . (15)

Then the natural Poisson bracket on the dual space L*
of L coincides (up to a minus sign) with the noncano-
nical part of the CHD bracket described above, provid-
ed one denotes the dual coordinates to L as follows:
M; is dual to 3/3x;; G4 is dual to C*(R”) @ e,; p and ¢
are dual to the first and second summand C=(R"),
respectively.

For further explanations and other applications of
these methods see, e.g. refs. [4—6].
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